$$
\begin{aligned}
& \text { دانشگاه صنعتى اصفهان ، دانثككده مهندسى مواد } \\
& \text { تمرين سرى هشتم شكل دادن فلزات، تاريخ تحويل: --/--9 } 9
\end{aligned}
$$

1- Estimate the force required to coin a 25 -cents coin. Assume that the mean flow stress is $55,000 \mathrm{psi}$, the diameter is 0.56 in , and the thickness after forming is 0.043 in and the friction is sticking.

2- Figure shows a billet before and after hot forging from an initial size of $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 25 \mathrm{~mm}$ to 10 $\mathrm{mm} \times 2.5 \mathrm{~mm} \times 25 \mathrm{~mm}$. This is accomplished by using a flat-face drop hammer. Sticking friction can be assumed. For the rate of deformation and the temperature, a flow stress of 106 MPa can be assumed.
a) Find the force necessary.
b) Find the work required. (Remember that work $=\boldsymbol{\int} \mathbf{F d L}$ and that F changes with \mathbf{L}.)
c) From what height would the hammer have to be dropped?
d) Compute the efficiency, $\boldsymbol{\eta}$.

3- Figure below shows a thin lead ring being used as a gasket. To insure an acceptable seal the gasket must be compressed to a thickness of 0.25 mm . Assume that the flow stress of lead is 15 MPa and strain hardening is negligible. Find the required force.

4- A block of lead $50 \mathrm{~mm} \times 40 \mathrm{~mm} \times 180 \mathrm{~mm}$ is pressed between flat dies to a size $20 \mathrm{~mm} \times 100 \mathrm{~mm} \times 180 \mathrm{~mm}$. If the uniaxial flow stress is $\mathrm{Y}=14 \mathrm{MPa}$ and $\mu=0.15$ determine the pressure distribution over the 100 mm dimension and the total forging load.

