دانشگاه صنعتى اصفهان ، دانشكده مهندسى مواد
 تمرين سرى بنجم شكل دادن فلزات، تاريخ تحويل: --/--99

1- A brass tensile specimen, with initial diameter 0.18 in , was tested and the maximum load of 105 ksi was recorded at an elongation of 27%. What is the load for an identical tensile specimen when the elongation is 15% ? (Note: \% elongation $=100 *\left(l_{f} l_{0}\right) / l_{0}$. Approximate stress strain function: $\left.\bar{\sigma}=K \bar{\varepsilon}^{n}\right)$.

2- During a tension test the tensile strength (UTS) was found to be 580 MPa . This was recorded at an elongation of 22%. Determine n and K if the approximation $\bar{\sigma}=K \bar{\epsilon}^{n}$ applies.

3- Show that the plastic work (energy) is $\sigma_{x} \varepsilon_{x} /(n+1)$ for a metal stretched in tension to ε_{x} if $\bar{\sigma}=K \bar{\varepsilon}^{n}$.
4- For plane-strain compression a) Express the incremental work per volume, $d w$, in terms of $\bar{\sigma}$ and $d \bar{\varepsilon}$ and compare it with $d w=\sigma_{1} d \varepsilon_{1}+\sigma_{2} d \varepsilon_{2}+\sigma_{3} d \varepsilon_{3}$. b) If $\bar{\sigma}=K \bar{\varepsilon}^{n}$, express the compressive stress as a function of σ_{1}, K, and n.

5- The strain-hardening of a certain alloy is better approximated by $\bar{\sigma}=Q-\exp (1-b \bar{\epsilon})$ than by $\bar{\sigma}=K \bar{\epsilon}^{n}$. Determine the true strain at necking in terms of Q and b. Also, express the tensile strength in terms of Q and b.

6- A metal sheet undergoing plane-strain deformation is loaded to a tensile stress of 560 MPa . What is the strain if the effective stress-strain relation is $\bar{\sigma}=520(0.01+\bar{\epsilon})^{0.25}$.

7- An aluminum tube fitted over a steel rod is shown in the figure. The steel may be considered rigid and the friction between the aluminum and the steel may be neglected. If $\bar{\sigma}=210 \bar{\varepsilon}^{0.20} \mathrm{MPa}$ for the tube and it is loaded as indicated, calculate the force F at instability.

8- A thin-wall tube with closed ends is subjected to an ever-increasing internal pressure. Find the dimensions r and t in terms of the original dimensions r_{o} and t_{o} at maximum pressure. Assume $\bar{\sigma}=750 \bar{\epsilon}{ }^{0.24} \mathrm{MPa}$.

